

Dane satelitarne dla administracji publicznej

Scenariusz warsztatowy 2

WIELOCZASOWA ANALIZA ZMIAN KORYTA RZEKI NA PODSTAWIE OBRAZÓW OPTYCZNYCH I RADAROWYCH

C E SA/T C medala

Siedziba główna Agencji |ul. Trzy Lipy 3 (Budynek C), 80-172 Gdańsk | tel. +48 58 500 87 60 | e-mail: sekretariat@polsa.gov.pl Oddział w Warszawie | ul. Prosta 70, 00-838 Warszawa | tel. +48 22 380 15 50 | e-mail: sekretariat.warszawa@polsa.gov.pl Oddział w Rzeszowie | ul. Warszawska 18, 35-205 Rzeszów | tel. +48 516 222 695 | e-mail: michal.pilecki@polsa.gov.pl

Spis treści

Spis treści	2
Opis zadania	3
Cel zadania	3
Wykaz danych przestrzennych GIS	3
Wykaz stron internetowych	3
Wykaz zastosowanego oprogramowania	3
Opis ćwiczenia	4
1. Wyznaczenie wskaźnika NDWI	4
2. Wyznaczenie koryta rzeki na podstawie wartości granicznej NDWI	7
3. Analiza zmian koryta cieku	8
4. Analiza zmian koryta cieku na podstawie danych z satelity Sentinel-2	10
5. Analiza zmian koryta cieku na podstawie danych z satelity Sentinel-1	11

Opis zadania

Celem niniejszych warsztatów jest analiza zmian koryta rzeki na podstawie obrazów optycznych. Podczas warsztatów będzie wykorzystane oprogramowanie QGIS (wersja Long term release 3.16 lub nowsza – w zależności od wykorzystanej wersji niektóre funkcje oraz zrzuty ekranów mogą się nieznacznie różnić) oraz ogólnodostępne dane z satelitów misji Landsat.

Cel zadania

• Analiza zmian koryta rzeki na podstawie obrazów optycznych

Wykaz danych przestrzennych GIS

Dane przestrzenne potrzebne do wykonania ćwiczenia znajdują się w folderze MD_3_2\Dane.

Wykorzystano dane zarejestrowane przez satelity Landsat 5, 7 i 8. W ćwiczeniu zastosowano dane pozyskane w interwałach 15 letnich w trzech terminach: 15.05.1985 (Landsat 5): Bug_1985_subset.tif
 30.04.2000 (Landsat 7): Bug_2000_subset.tif
 16.04.2015 (Landsat 8): Bug_2015_subset.tif

Dane zostały pobrane ze strony <u>https://earthexplorer.usgs.gov/</u> dla ścieżki (path) 187 i szeregu (row) 23 obejmujące swoim zasięgiem część doliny rzeki Bug.

- Wykorzystano dane z satelitów Sentinel-2 (kanał zielony i bliska podczerwień) przedstawiające fragment koryta rzeki Amu-daria:
 20.03.2019: -subset_Amudaria_2019_03_20_GREEN.tif,
 subset_Amudaria_2019_03_20_NIR.tif
 - 25.11.2019: subset_Amudaria_2019_11_25_GREEN.tif, - subset_Amudaria_2019_11_25_NIR.tif
- Wykorzystano dane z satelitów Sentinel-1 przedstawiające fragment koryta rzeki Amu-daria: 25.03.2019: sentinel1_sigmaVV_20190325.tif 21.11.2019: sentinel1_sigmaVV_20191121.tif

Dane przygotowane do warsztatów zostały już wstępnie przetworzone. Dookoła rzeki Bug (pozyskanej z MPHP10 - Mapa Podziału Hydrograficznego Polski) wyznaczono bufor o szerokości 1 km. Na podstawie tak przygotowanej warstwy ograniczono obszar analiz tylko do tej strefy.

Dane z satelity Sentinel-2 również zostały przycięte do obszaru koryta rzeki.

Wykaz stron internetowych

- Pobieranie zobrazowań satelitarnych Sentinel-1 i Sentinel-2: <u>https://scihub.copernicus.eu/dhus/#/home</u>
- Pobieranie zobrazowań satelitarnych Landsat: https://earthexplorer.usgs.gov/
- Informacje (m.in. rozdzielczość przestrzenna i spektralna) na temat satelitów Landsat: https://www.usgs.gov/land-resources/nli/landsat

Wykaz zastosowanego oprogramowania

• QGIS 3.16

Opis ćwiczenia

1. Wyznaczenie wskaźnika NDWI

Zasięg koryta cieku dla trzech zdjęć zostanie wyznaczony na podstawie wskaźnika NDWI (Normalized Difference Water Index), wskaźnik ten obliczany jest ze wzoru:

$$NDWI = \frac{Green - NIR}{Green + NIR}$$

gdzie:

Green – reflektancja w kanale zielonym, NIR – reflektancja w kanale bliskiej podczerwieni.

Otwórz program QGIS i zapisz nowy projekt w katalogu roboczym (najlepiej jak będzie to katalog ze wszystkimi danymi wejściowymi i późniejszymi przetworzeniami) z paska menu wybierz: **Projekt** > **Zapisz jako...**w oknie wybierz swój folder i nadaj projektowi nazwę, zapisany plik będzie miał rozszerzenie **qgz** (w czasie pracy w programem QGIS pamiętaj, aby nie nazywać folderów i plików używając polskich diakrytycznych znaków i spacji).

Wejdź we właściwości projektu **Projekt > Właściwości** wybierz zakładkę **Ogólne** i ustaw folder z danymi i projektem jako katalog domowy projektu (**Katalog projektu**). Jeżeli wszystko zostało ustawione poprawnie w panelu **Przeglądarka** po rozwinięciu zakładki **Katalog projektu** uzyskasz dostęp do danych w folderze roboczym.

		🔇 Właściwości projektu	Ogólne	×
		Q	▼ Ustawienia główne	
		🔀 Ogólne	<u>P</u> lik projektu	
Przeglądarka	ØX	📝 Metadane	Katalog projektu (OZ_4_blok_7_2)/MD_3_2	☑ …
🗔 😂 🔻 🗊 🕐		Jukład	Tytuł projektu	
📩 🕁 Ulubione	-	🐨 współrzędnych	Kolor obiektów zaznaczonych 🛛 👻 Kolor <u>t</u> ła	
 Katalog projektu 		Domyślny styl	Zapisz ścieżki względne 💌	
 Wyniki 		📋 Źródła danych	Unikaj artefaktów, gdy projekt jest renderowany jako kafelki mapy ((pogarsza wydajność)
Q OZ_4_MD_2_2 G Home	_	Relacie	▼ Pomiary	
C(\		C Zmianna	Elipsoida (do pomiaru odległości i powierzchni) WGS 84	· · · · · · · · · · · · · · · · · · ·
GeoPackage			Półoś wielka 6378137,000	Półoś mała 6356752,314
SpatiaLite RestGIS	*	Makra	Jednostki pomiaru odległości metry	•
		QGIS Server	Jednostki pomiaru powierzchni metry kwadratowe	•
			▼ Wyświetlanie współrzędnych	
			ОК	Anuluj Zastosuj Pomoc

Wczytaj dane Landsat (*Bug_1985_subset.tif*, *Bug_2000_subset.tif*, *Bug_2015_subset.tif*) z katalogu *MD_3_2\Dane\Landsat* do projektu za pomocą narzędzia **Dodaj warstwę rastrową** (menu **Warstwa > Dodaj warstwę > Dodaj warstwę rastrową**)

Po zapoznaniu się z obszarem badawczym możesz przejść do obliczeń. Z głównego menu wybierz **Raster > Kalkulator rastra** otworzy się okno, w którym możesz wykonywać obliczenia na warstwach rastrowych.

W polu **Kanały rastra** widzisz wszystkie dostępne zdjęcia i ich kanały w następującym formacie: **nazwa_obrazu@numer_kanału**. Aby wykonać obliczenia musisz napisać (lub stworzyć) równanie w polu **Wyrażenie kalkulatora rastra**. W celu uniknięcia błędów podczas wpisywania nazw obrazów kliknij dwukrotnie na nazwę kanału, żeby przeniosła się do pola **Wyrażenie kalkulatora rastra**. Napisz równanie na NDWI i w polu **Warstwa** wskaż swój katalog i nadaj nazwę wynikowi obliczeń (np. *NDWI_1985.tif*). Upewnij się, że kwadracik przy **Dodaj wynikową warstwę do projektu** jest aktywny i kliknij **OK**.

Dla różnych satelitów Landsat numeracja kanałów jest nieco inna. Dlatego na potrzeby tego ćwiczenia wybierz:

- dla Landsat 5 i Landsat 7 (1985 i 2000) kanały: 2 i 4
- dla Landsat 8 (2015) kanały: 3 i 5

Harmonizacia rastrów	Kanały rastra				Warstwa	wynikowa			-
tt Georeferencer	Bug_1985_sub	set@1			Warstw	a	2MD_3_2\Wyn	kiWDWI_1985.tif 🕼	
	Bug_1985_sub	set@2 set@3			Format	wyiściowy	GeoTIFE		-
Ereehand Raster Georeferencer	Bug_1985_sub	set@4			i ormot	nyjscony	Georgi		
Analiza	Bug_1985_sub Bug_1985_sub	set@5			Zasięg	wybranej warstwy			
Odwzorowania	 Bug_1985_sub 	set@7			X min	504362,72727	X max	673059,54545	
Różne	Bug_2000_sub	set@1			Y min	5779334,99999	\$ Y max	5841160,90908	
Ciecie	Bug_2000_sub	set@2			Kolumo	5891	1 Wiers	zv 2159	-
Ciçcie -	Bug_2000_sub	set@4						., [10
Konwersja	Bug 2000_sub	set@5			Układ w	spółrzędnych wyniku	EPSG:32634 -	WGS 84 / UTM zone *	16
	Bug_2000_sub	set@7		*	✓ Dod	laj wynikową warstw	ę do projektu		
	.0								
	♥ Operatory								
	+	*	sqrt	cos	sin	tan	log10	(
		1	^	acos	asin	atan	In		
				1-	1-	10.54	AND	09	
							AND	UK	-
	Wyrażenie kalko	ulatora rastra	i -						Ł
	("Bug 1985	subset 82"	- "Bug 1985	subset 84")	/ ("Bu	n 1985 subset@	2" + "Bug 1	85 subset84")	Т
	(bug_1900			Sangered 1	/ (g_1505_5005606	a + buy_1.	,05_50056064)	L
	17								۰.
	Wyrażenie jest pop	rawne							

Wynikiem jest mapę w skali szarości jak na rysunku poniżej. Jeżeli chcesz zmienić kolory, aby obraz był dla Ciebie czytelniejszy w panelu **Właściwości warstwy** wybierz rodzaj mapy **Jednokanałowy pseudokolor** i dostosuj kolory.

Wykonaj obliczenia wskaźnika NDWI dla każdego roku.

Przeanalizuj otrzymane wyniki używając narzędzia **Informacje o obiekcie** . Narzędzie to pozwala na odczytanie wartości we wskazanej komórce rastra. Zmieniając tryb działania z rozwijanym menu na **od góry w dół - wszystkie** możesz odczytać wartości dla wszystkich aktywnych warstw na raz. Sprawdź jakie wartości współczynnik przyjmuje dla wody, a jakie dla innych obszarów.

Wynik identyfikacji	Ø 🕱
2 😺 🟦 😫 🗞 2	😑 👯 🕶 🔧
Obiekt	Wartość
NDWI_2000	0
 NDWI_2000 	
Kanał 1	0.172952
 (pochodne) 	
 NDWI_2015 	1
 NDWI_2015 	
Kanał 1	0.667836
 (pochodne) 	
 NDWI_1985 	2
 NDWI_1985 	
Kanał 1	0.46125
 (pochodne) 	
Tryb od góry w dół - wszystkie	¥
Widok Drzewo 🔻	Pomoc

2. Wyznaczenie koryta rzeki na podstawie wartości granicznej NDWI

Koryto cieku zostanie wyznaczone na podstawie progowej wartości NDWI. Według literatury dla wody wartość wskaźnika NDWI powinna wynosić powyżej 0. Analizując wyniki rezultat powinien być podobny.

Narzędzie **Kalkulator Rastra**, oprócz obliczeń na warstwach rastrowych, pozwala na tworzenie map binarnych na podstawie warunków logicznych. Piksele mapy wynikowej spełniające warunek przyjmują wartości 1, a pozostałe piksele 0. Wpisz w polu **Wyrażenie kalkulatora rastra**: **"NDWI_1985@1">>0**.

anaty rastra				Warstwa	wynikowa					
NDWI_1985@	01			Warstw	з	2\	Vyniki\kory	to_1985_0.ti	if 🖾 🛛	
NDWI_2000@	3i5@1			Format	wyjściowy	G	OTIFF			*
				Zasięg	wybranej wa	rstwy				
				X min	504345,000	00 \$	X max	673065,00	000	1
				Y min	5779335,00	000 \$	Y max	5841165,0	0000	1
				Kolumn	5624	\$	Wierszy	2061		1
Operatory						tan				
+	*	sort	COS		sin	Lari	10	010		
+	*	sqrt	acos		asin	atan		ln	(-
+	* / >	sqrt	acos		asin	atan		In (ND	() OR	
+ - < yrażenie kall	* / / kulatora rastra		cos acos !=		asin	atan >=		In	() OR	
+ - - yrażenie kall 'NDWI_1985@	* / / kulatora rastra 11" > 0		acos		asin	atan >=		ig 10	() OR	
+ - < yrażenie kall NDWI_1985@	* / / kulatora rastra 11" > 0	sqrt	cos acos !=		asin	atan >=	A	In ND	() OR	
+ - < yrażenie kall NDWI_1985@	* / / > kulatora rastra 11" > 0	sqrt	cos acos !=		sin	atan		In ND	() OR	

W wyniku otrzymasz czarnobiałą mapę, gdzie kolorem białym zaznaczone jest koryto rzeki (wartości NDWI > 0), a czarnym wszystko inne. Jeżeli chcesz zmienić sposób wyświetlania wyniku w panelu **Właściwości warstwy > Styl** wybierz typ legendy **Paleta/unikalne wartości** i kliknij **Klasyfikuj** (przed sklasyfikowaniem wartości obraz zniknie z obszaru roboczego). Następnie możesz ustawić dowolne kolory dla koryta i pozostałych obszarów.

	ściwości warstwy Rendrowani Sposób wyświet	y - koryto_1985_0 Styl ie kanałów tłania Paleta/Unikalne wartości 🔹	
	Kanał	Kanał 1 (Gray)	-
*	Paleta kolorów	Random colors	•
	Wartość	Kolor Etykieta	
	0	0	
	1	1	
	▼ Renderowar	Klasyfikuj Usuń wszystko nie kolorów	

Przeanalizuj otrzymane wyniki, jeżeli uważasz, że wynik mógłby być dokładniejszy przetestuj inne wartości progowe wskaźnika NDWI. Następnie powtórz obliczenia dla pozostałych terminów (dla różnych terminów możesz zastosować inne wartości progowe, ale nie powinny one się od siebie znacząco różnić).

3. Analiza zmian koryta cieku.

Analiza zmian koryta cieku obejmować będzie wyznaczenie lokalizacji tych zmian w przestrzeni w postaci mapy zmian koryta oraz obliczenie powierzchni zmian koryta cieku.

Do wyznaczenia mapy zmian koryta wykorzystamy funkcję **Kalkulator rastra**. Odejmując warstwę rastrową z jednego terminu od warstwy rastrowej z drugiego terminu zarejestrowanych na zobrazowaniach satelitarnych. W wyniku otrzymamy mapę z 3 wartościami:

- 0 brak zmiany (0 0 lub 1 1);
- +1 koryto uległo zmniejszeniu;
- -1 koryto uległo zwiększeniu.

Ponownie otwórz **Raster > Kalkulator rastra** i w polu **Wyrażenie kalkulatora rastra** odejmij warstwę z korytem wyznaczonym dla 2000 roku od warstwy z korytem dla 1985 roku.

NDWI_1985@1 Warstwa roznica_1985minus2000.tf @ NDWI_2015_315@1 Format wyjściowy GeoTIFF koryto_2000_015@1 Koryto_2000_015@1 Koryto_2000_015@1 koryto_2015_009@1 X min 504345,00000 ‡ X max 673065,00000 Y min 5779335,00000 ‡ Y max 5841165,00000 Kolumn 5624 ‡ Wierszy 2061 Układ współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ Ikład współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ <td< th=""><th>nały rastra</th><th></th><th></th><th></th><th>Warstwa</th><th>wynikowa</th><th>· _</th><th></th><th></th><th></th><th></th><th></th></td<>	nały rastra				Warstwa	wynikowa	· _					
NDWI_2015_3i5@1 GeoTIFF koryto_1985_0@1 Zasieg wybranej warstwy koryto_2015_009@1 X min 504345,00000 \$ X max 673065,00000 Y min 5779335,00000 \$ Y max 5841165,00000 X min 504345,00000 \$ Y max 5841165,00000 Y min 5524 Wierszy 2061 Układ współrzędnych wyniku EPSG:32634 - WGS 84 / UTŀ ▼ \$ ✓ Dodaj wynikową warstwę do projektu ✓ Dodaj wynikową warstwę do projektu ✓ Operatory + * sqrt cos = != <= Yrażenie kalkulatora rastra "koryto_1985_0@1" - "koryto_2000_015@1"	NDWI_1985@1 NDWI_2000@1				Warstw	a		rozn	ica_1985r	minus2000.t	tif 🖾	
Koryto_2000_001 Zasięg wybranej warstwy koryto_2015_009@1 X min 504345,00000 ‡ X max 673065,00000 Y min 5779335,00000 ‡ Y max 5841165,00000 Y min 5779335,00000 ‡ Y max 5841165,0000 Kolumn 5624 ‡ Wierszy 2061 Układ współrzędnych wyniku EPSG:32634 - WGS 84 / UTN * • Operatory • operatory + * sqrt cos = != <=	NDWI_2015_315	@1			Format	wyjściowy		Geo	TIFF			*
koryto_2015_009@1 X min 504345,0000 ‡ X max 673065,0000 Y min 5779335,0000 ‡ Y max 5841165,0000 Kolumn 5624 ‡ Wierszy 2061 Układ współrzędnych wyniku EPSG:32634 - WGS 84 / UTM ▼ ✓ Dodaj wynikową warstwę do projektu * operatory + * sqrt cos sin tan log10 (- / ^ acos asin atan ln) < > = != <= >= AND OR yrażenie kalkulatora rastra *koryto_1985_0@1* - *koryto_2000_015@1*	koryto_2000_01	5@1			Zasięg	wybranej w	arstwy					
Y min 5779335,00000 ‡ Y max \$841165,0000 Kolumn 5624 ‡ Wierszy 2061 Układ współrzędnych wyniku EPSG:32634 - WGS 84 / UTV ♥ ● ✓ Dodaj wynikową warstwę do projektu ✓ > * * sqrt cos sin tan log10 (- / ^ acos asin atan In) <	koryto_2015_00	9@1			X min	504345,00	000	\$	X max	673065,00	0000	4
Kolumn 5624					Y min	5779335,0	0000	\$	Ymax	5841165,0	00000	\$
Układ współrzędnych wyniku EPSG:32634 - WGS 84 / UTV *					Kolumn	5624		\$	Wierszy	2061		4
- / ^ acos asin atan In) < > = != <= >= AND OR yrażenie kalkulatora rastra ''koryto_1985_0@1" - "koryto_2000_015@1" ''												
	Operatory	*	sart	cos		sin	tan			a10	(
yraženie kalkulatora rastra Vkoryto_1985_0@1" - "koryto_2000_015@1"	+	*	sqrt	cos		sin	tan atan) lo	g10	(
	• • • • • • • • • • • • • • • • • • •	* / / >	sqrt	cos acos		sin asin <=	tan atan >=		o	g 10	() OR	

Wynik domyślnie wyświetli się w skali szarości, aby był bardziej czytelny przejdź do panelu styli i ustaw **Paleta/unikalne wartości,** kliknij **Klasyfikuj**. Powinieneś otrzymać wynik podobny do przedstawionego poniżej.

	Q Właściwości warstwy	- roznica_1985minus2000 S kanałów	Styl	×
	Sposób wyświetla	ania Paleta/Unikalne wartośc	i 🔻	
	Kanał 🛛	Kanał 1 (Gray)		
	Paleta kolorów		Random colors	T
	Wartość	Kolor Etykieta		
	-1	-1		
ر. مطالحہ و ک	۰	0		
		1 Klasvílion		rý wszycita
	Styl *		OK Anu	luj Zastosuj Pomoc

W ten sposób otrzymaliśmy mapę zmian koryta cieku w latach 1985 - 2000. Wykonując analogiczne kroki możesz wykonać mapę zmian koryta cieku w latach 2000 - 2015 lub w okresie 1985 - 2015.

Ostatnim krokiem w ćwiczeniu będzie obliczenie powierzchni zmian koryta. W panelu **Algorytmy Processingu** znajdź narzędzie **Raport unikalnych wartości rastra** . Jako **Warstwa źródłowa** wybierz warstwę będąca wynikiem odejmowania dwóch terminów, **Numer kanału** wybierz Kanał 1 (Gray), wskaż, gdzie zapisać raport w postaci pliku *.html i pliku *.shp. Kliknij **Uruchom.**

🔇 Raport unikalnych wartości rastra		× Algorytmy Processingu	Ø
Raport unikalnych wartości rastra Parametry Plk zdarzeń Warstwa źródłowa Warstwa źródłowa Warstwa źródłowa Numer kanału Numer kanału Kanał 1 (Gray) Raport unikalnych wartości [Zapisz w plika tymczasowym) Tabela unikalnych wartości [Pomiń dane wyjściowe] Wczytaj plik wynkowy po zakończeniu Vizytaj plik wynkowy po zakończeniu	Apoynt zvraca kość i powierzó Apoynt zvraca kość i powierzó wikalnej wartości w podanej wa wikalnej wartości w podanej wa	Algorytmy Processingu Algorytmy Processingu Algorytmy Processingu Sarkaj Sarkaj Sarkaj Sotatnio užyvane Q Statnio užyvane Q Ostatnio užy]
		 [™]∑ Statystyki strefowe [™]∑ Statystyki warstwy rastrowej [▶] Q Raster - analiza terenu [▶] Q Raster - obróbka 	
0%		Anuluj Q Wektor - algebra mapowa Q Wektor - analiza Q Wektor - analiza sieciowa	
Wykonaj jako przetwarzanie wsadowe	Uruchom Zamknij	Pomoc Wynik identyfikacji SCP Dock Algorytmy F	Processingu Podgląd wyników

Przykładowy wynik w postaci raportu html:

←	\rightarrow C 1	🗅 🛈 Plik	E:/Wojciech_Ci	zkowski/Dydakt	yka/Sat4ENvi/d	ane/zmianaSTAT	htm.html		
	Aplikacje 🕻	: 🖾 🌚 🔶	🖓 M gmi	ail 🦁 DataCamp	🗴 尔 Coursera	. Habitars	R 📣	Suliga_cloud	🔒 LST_L8_F
Anal	yzed file: E	:\Wojciech_Cie	zkowski\Dyda	ktyka\Sat4ENvi	dane\miedzy1	985i2000.tif (ba	nd 1)		
Exter	nt: 504362.7	72726999999739	9416,5779334.9	9999900003895	164 : 673059.5	45449999997597	19,5841	160.90907999	996629357
Proje	ction: WGS	8 84 / UTM zon	ne 34N (EPSG:	32634)					
Widt	h in pixels:	5891 (units per	pixel 28.6364	1					
Heig	ht in pixels:	2159 (units pe	r pixel 28.6364)					
Total	pixel coun	t: 12718669							
NOE	ATA pixel	count: 1210171	.4						
Valu	e Pixel cou	nt Area (m²)							
-1	45570	37369283.05	5689856						
0	568124	465885156.1	8647						
1	3261	2674154.751	1997942						

Przykładowy wynik w postaci tabeli z pliku shp:

0	zmianaSTAT :: Fe	atures Total: 3, Filte	er 🗆 🔍 🗕 🗙	
1	1 🗊 📑 😂 🗄	i i ∼ 0 0	چ 📄 🖕	»
	value	count	m²	
1	1,0000000	3261	2674154,751997	
2	-1,00000000	45570	37369283,05689	
3	0,0000000	568124	465885156,1864	
	Show All Features			

4. Analiza zmian koryta cieku na podstawie danych z satelity Sentinel-2

Z katalogu MD_3_2\Dane\Sentinel-2\ wczytaj do programu QGIS pliki:

- subset_Amudaria_2019_03_20_GREEN.tif
- subset_Amudaria_2019_03_20_NIR.tif
- subset_Amudaria_2019_11_25_GREEN.tif
- subset_Amudaria_2019_11_25_NIR.tif

Siedziba główna Agencji |ul. Trzy Lipy 3 (Budynek C), 80-172 Gdańsk | tel. +48 58 500 87 60 | e-mail: sekretariat@polsa.gov.pl Oddział w Warszawie | ul. Prosta 70, 00-838 Warszawa | tel. +48 22 380 15 50 | e-mail: sekretariat.warszawa@polsa.gov.pl Oddział w Rzeszowie | ul. Warszawska 18, 35-205 Rzeszów | tel. +48 516 222 695 | e-mail: michal.piłecki@polsa.gov.pl

Są to dane z satelity Sentinel-2 dla fragmentu koryta rzeki Amu-Daria. W analogiczny sposób jak w przypadku danych z satelitów Landsat wykonaj analizę zmian koryta cieku.

5. Analiza zmian koryta cieku na podstawie danych z satelity Sentinel-1

Otwórz obraz sentinel1_sigmaVV_20190325.tif (katalog: MD_3_2\Dane\Sentinel-1). Następnie otwórz Kalkulator rastra i w polu Wyrażenie kalkulatora rastra wpisz wyrażenie tak, aby przypisać komórkom rastra poniżej ustalonej wartości progowej (około 0.02, przetestuj inne wartości tak aby otrzymać zadowalający wynik) miały wartość 1. Pamiętaj o wskazaniu folderu zapisu i nadaniu wynikowemu plikowi nazwy w polu Warstwa.

entinel1_sigma	aVV_20190325(⊉1 		Warstw Format Zasięg X min Y min Kolumn Układ w	va wyjściowy wybranej w 59, 19257 42, 70724 1447 uspółrzędny	2\W Ge varstwy \$ \$ ch wyniku EP	'yniki\S1_ka oTIFF X max Y max Wierszy SG:4030 -	59,32256 42,85070 1597 Unknown da	ec ⊠ ▼ ↓ ↓ atur ▼ @
				Zasięg X min Y min Kolumn Układ w	y wybranej v 59, 19257 42, 70724 1447 vspółrzędny	varstwy	X max Y max Wierszy SG:4030 - I	59,32256 42,85070 1597 Unknown da	¢ ¢ \$
				X min Y min Kolumn Układ w	59, 19257 42, 70724 1447 vspółrzędny	ch wyniku EP	X max Y max Wierszy SG:4030 - 1	59,32256 42,85070 1597 Unknown da	¢ ¢ ¢
				Y min Kolumn Układ w	42,70724 1447 vspółrzędny	th wyniku EP	Y max Wierszy SG:4030 - I	42,85070 1597 Unknown da	¢ ¢
				Kolumn Układ w	1447 vspółrzędny	¢	Wierszy SG:4030 - I	1597 Unknown da	atur 👻 🏤
				Układ w	vspółrzędny	ch wyniku EP	SG:4030 - I	Unknown da	atur 🔻 🏀
Operatory				✓ Dod	laj wynikow	ą warstwę do p	projektu		
+	*	sqrt	cos		sin	tan		g10	(
-	1	^	acos		asin	atan		In ()
<	>	=	!=		<=	>=	A (ND	OR
raženie kalkul sentinell_si aženie jest popra	atora rastra .gmaVV_2019 awne	032501" <= 0.	.02						

Wczytaj obraz z drugiego terminu (plik: *MD_3_2\Dane\Sentinel-1\sentinel1_sigmaVV_20191121.tif*) i wykonaj te same kroki. W wyniku, jak poprzednio, otrzymasz dwie mapy, gdzie koryto rzeki jest zaznaczone kolorem białym (wartości równe 1), a reszta obszaru kolorem czarnym (wartości równe 0). Wynik powinien być podobny do przedstawionego na poniższym zrzucie ekranu.

Ponownie otwórz **Raster Calculator** i odejmij warstwę przedstawiającą koryto rzeki uzyskane w listopadzie od warstwy przedstawiającej koryto rzeki uzyskane w marcu. W wyniku uzyskasz mapę przedstawiającą zmiany w korycie cieku (podobną do przedstawionej na poniższym zrzucie ekranu). Jak poprzednio mapa przyjmuje trzy wartości:

- 0 brak zmiany (0 0 lub 1 1);
- +1 koryto uległo zmniejszeniu;
- -1 koryto uległo zwiększeniu.

W analogiczny sposób jak poprzednio możesz zmienić estetykę mapy i policzyć powierzchnię zmian koryta cieku.

Przedstawione w zadaniu analizy pozwalają na śledzenie zmian zachodzących w korytach rzek. W zależności od wykorzystanych danych mogą one służyć do analizy zmian wieloletnich (np. dane z satelitów Landsat dostępne dla długiego okresu) lub sezonowych (np. dane z satelitów Sentinel, dostępne od 2015 roku). Wyniki analiz oprócz wizualizacji w formie mapy, pozwalają na obliczenie powierzchni zmian koryta. Przedstawione narzędzie może również służyć do wyznaczania zasięgu wezbrań.