

Dane satelitarne dla administracji publicznej

Scenariusz warsztatowy 2

WSKAŹNIKI TELEDETEKCYJNE JAKO MIARA STANU ŚRODOWISKA

Contraction of the second second

Spis treści

Opis zadania	3
Cel zadania	3
Wykaz danych przestrzennych GIS	3
Wykaz stron internetowych	4
Wykaz zastosowanego oprogramowania	4
Instalacja wtyczki MapSwipe Tool	5
Opis ćwiczenia	6
1. Wczytanie danych do projektu	6
2. Obliczenie wskaźników roślinności	8
3. Obliczenie wskaźnika wodnego	12
4. Analiza wartości wskaźników roślinności i wskaźników wodnych	13
5. Mapa zmian wartości wskaźników roślinnych i wodnych	17

Opis zadania

Niniejsze zadanie ma na celu wykorzystanie satelitarnych danych wielospektralnych do analizy sezonowych zmian wskaźników roślinności (np. NDVI, SAVI) oraz wskaźników wodnych (np. NDWI, MSI) dla różnych typów pokrycia terenu obszaru chronionego. Analiza wskaźników, a co za tym idzie stanu środowiska, zostanie przeprowadzona na danych wielospektralnych Sentinel-2 pozyskanych podczas sezonu wegetacyjnego 2018 na obszarze Biebrzańskiego Parku Narodowego. Klasy pokrycia terenu dla danego obszaru zostały pobrane z bazy CLC 2018 (CORINE Land Cover).

Cel zadania

Celem zadania jest obliczenie wskaźników teledetekcyjnych (wskaźników roślinności i wskaźników wodnych) na podstawie obrazów wielospektralnych oraz zapoznanie się ze sezonową zmiennością właściwości spektralnych poszczególnych klas pokrycia terenu, jak i oceną stopnia uwilgotnienia roślinności na obszarze chronionym w programie QGIS.

Wykaz danych przestrzennych GIS

Dane przestrzenne potrzebne do wykonania ćwiczenia znajdują się w folderze MD_3_2\Dane.

 Mozaika obrazów satelitarnych Sentinel-2 z 23.08.2018r. z wymaskowanymi chmurami: S2_20180823_10m.tif

Nr kanału rastra (plik TIF)	Nr kanału satelity Sentinel-2
1	B02 - Blue
2	B03 - Green
3	B04 - Red
4	B05 - Vegetation Red Edge
5	B06 - Vegetation Red Edge
6	B07 - Vegetation Red Edge
7	B08 - Near-infrared
8	B8A - Near-infrared
9	B11 - Short Wave Infrared SWIR1
10	B12 - Short Wave Infrared SWIR2

Numeracja kanałów w wielokanałowych rastrach z danymi Sentinel-2:

Wskaźniki NDVI obliczone na podstawie danych satelitarnych Sentinel-2 z wymaskowanymi chmurami z terminów (folder: MD_3_2\Dane\NDVI): 10.04.2018: S2_20180410_NDVI.tif,
 10.05_2018: S2_20180510_NDVI.tif,

10.05.2018: S2_20180510_NDVI.tif, 30.05.2018: S2_20180530_NDVI.tif, 09.07.2018: S2_20180709_NDVI.tif, 12.10.2018: S2_20181012_NDVI.tif,

Wskaźniki SAVI obliczone na podstawie danych satelitarnych Sentinel-2 z wymaskowanymi chmurami z terminów (folder: MD_3_2\Dane\SAVI): 10.04.2018: S2_20180410_SAVI.tif, 10.05.2018: S2_20180510_SAVI.tif, 30.05.2018: S2_20180530_SAVI.tif, 09.07.2018: S2_20180709_SAVI.tif, 12.10.2018: S2_20181012_SAVI.tif,

- Wskaźniki NDWI obliczone na podstawie danych satelitarnych Sentinel-2 z wymaskowanymi chmurami z terminów (folder: MD_3_2\Dane\NDWI): 10.04.2018: S2_20180410_NDWI.tif, 10.05.2018: S2_20180510_NDWI.tif, 30.05.2018: S2_20180530_NDWI.tif, 09.07.2018: S2_20180709_NDWI.tif, 12.10.2018: S2_20181012_NDWI.tif,
- Wskaźniki MSI obliczone na podstawie danych satelitarnych Sentinel-2 z wymaskowanymi chmurami z terminów (folder: MD_3_2\Dane\MSI): 10.04.2018: S2_20180410_MSI.tif, 10.05.2018: S2_20180510_MSI.tif, 30.05.2018: S2_20180530_MSI.tif, 09.07.2018: S2_20180709_MSI.tif, 12.10.2018: S2_20181012_MSI.tif,
- Plik wektorowy z granicą Biebrzańskiego Parku Narodowego: BPN.shp
- Plik wektorowy z klasami pokrycia terenu CLC 2018 (CORINE Land Cover 2018) w granicach BPN: *CLC2018_BPN.shp*

Wykaz stron internetowych

- Pobieranie zobrazowań satelitarnych Sentinel-2: https://scihub.copernicus.eu/dhus/#/home
- Informacje o produkcie poziomu 2 misji Sentinel-2 (Sentinl-2 Level-2A): https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
- Pobieranie danych CORINE Land Cover: <u>https://land.copernicus.eu/pan-european/corine-land-</u> <u>cover</u>
- Informacje o projekcie CORINE Land Cover w języku polskim: https://clc.gios.gov.pl/
- Kody klas (legenda) CORINE Land Cover: <u>https://clc.gios.gov.pl/index.php/o-clc/legenda</u>
- Baza danych wskaźników teledetekcyjnych: <u>https://www.indexdatabase.de/</u>

Wykaz zastosowanego oprogramowania

• QGIS 3.16

Instalacja wtyczki MapSwipe Tool

Wybierz z pola zakładek **Wtyczki > Zarządzanie wtyczkami**. W polu wyszukiwania wpisz nazwę **MapSwipe Tool**

i kliknij Zainstaluj wtyczkę. Ikona wtyczki powinna być widoczna na pasku narzędzi.

Opis ćwiczenia

1. Wczytanie danych do projektu

Otwórz program QGIS i korzystając z funkcji **Projekt > Zapisz jako**, zapisz projekt nazywając go np. *OZ_5_2_2qgz* (w czasie pracy w programem QGIS pamiętaj, aby nie nazywać folderów i plików używając polskich znaków diakrytycznych i spacji). Wejdź do panelu właściwości projektu **Projekt > Właściwości** wybierz zakładkę **General** i ustaw folder z danymi i projektem jako katalog roboczy projektu (**Katalog Projektu**). Jeżeli wszystko zostało ustawione poprawnie w panelu **Przeglądarka** po rozwinięciu zakładki **Katalog Projektu** uzyskasz dostęp do danych w folderze roboczym. Otwórz katalog **Dane**, zaznacz dane satelitarne Sentinel-2 *S2_20180823_10m.tif* i dodaj je do projektu poprzez przeciągnięcie ich do panelu **Warstwy**. Następnie zmień sposób wyświetlania rastra, tak by obraz Sentinel-2 wyświetlić w barwach rzeczywistych RGB (**Właściwości > Styl**: kolor wielokanałowy, czerwony (*R*): Kanał 03, zielony (*G*): Kanał 02, niebieski (*B*): Kanał 01) i spróbuj zidentyfikować rejon Biebrzańskiego Parku Narodowego.

W celu łatwiejszej identyfikacji koryta Biebrzy zmień sposób wyświetlania obrazu satelitarnego Sentinel-2 na kompozycję w barwach fałszywych CIR (**Właściwości > Styl**: kolor wielokanałowy, czerwony (R): Kanał 07, zielony (G): Kanał 03, niebieski (B): Kanał 02).

Obraz S2 z 23.08.2018 w kompozycji RGB

Obraz S2 z 23.08.2018 w kompozycji CIR

Następnie dodaj do projektu granicę parku (*BPN.shp*) i zmień sposób jej wyświetlania na np. na **outline blue** (**Właściwości > Styl**: Pojedynczy symbol, ouline blue).

Zapoznaj się również z klasami pokrycia terenu na obszarze parku. Dodaj do projektu dane wektorowe CORINE Land Cover (*CLC2018.shp*).

2. Obliczenie wskaźników roślinności

Istnieją różne wskaźniki roślinności, które można wykorzystać do monitorowania stanu środowiska. Jednym z najpopularniejszych jest znormalizowany różnicowy wskaźnik wegetacji (Normalize Difference Vegetation Index; Rouse i in. 1974¹). Wskaźnik NDVI jest najczęściej wykorzystywanym wskaźnikiem wegetacji w badaniach naukowych i w praktyce. Analiza wartości NDVI pozwala odróżnić roślinność od innych (sztucznych) rodzajów pokrycia terenu oraz określić fazę rozwojową i kondycję roślin. NDVI pozwala zdefiniować i zwizualizować obszary porośnięte roślinnością na mapie, a także wykryć nieprawidłowe zmiany w procesie wzrostu roślin. Do obliczenia wartości wskaźnika NDVI wykorzystywane są wartości odbicia rejestrowane w zakresie promieniowania czerwonego (Red) oraz w bliskiej podczerwieni (NIR). Sposób obliczania wskaźnika NDVI jest następujący:

NDVI =
$$\frac{NIR - Red}{NIR + Red}$$
 Red – reflektancja w kanale czerwonym,
NIR – reflektancja w kanale bliskiej podczerwieni.

Wartości wskaźnika NDVI zawierają się w zakresie od -1 do 1. Wartości wskaźnika NDVI zbliżone do -1 występują na obszarach pokrytych wodą. Wartości z zakresu od -0,1 do 0,1 występują na obszarach odkrytej gleby bez pokrywy roślinnej. Wartości wskaźnika NDVI z zakresu od 0,2 do 0,4 są charakterystyczne dla obszarów pokrytych roślinnością będącą w początkowej fazie rozwoju lub słabej kondycji. Wartości wskaźnika NDVI >0.6 uznawane są za wskaźnik zdrowej roślinności o wysokiej witalności. Natomiast NDVI zbliżone do 1 są charakterystyczne dla roślin będących w najwyższej fazie rozwoju, w bardzo dobrym stanie zdrowotnym.

¹Rouse J.W., Haas R.H., Scheel J.A., and Deering D.W. 1974. Monitoring Vegetation Systems in the Great Plains with ERTS. Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, vol. 1, p. 48-62.

Na wartość wskaźnika NDVI mogą mieć wpływ takie parametry jak kolor i wilgotność gleby, a także zwarcie roślinności. Ponadto przy gęstej pokrywie roślinnej wskaźnik NDVI doznaje wysycenie odbicia tzn. przy dużej biomasie dalszy jej wzrost nie powoduje zwiększania wartości wskaźnika. Aby zminimalizować wpływ jasności gleby, do oceny kondycji roślinności można zastosować wskaźnik SAVI (Soil Adjusted Vegetation Index; Huete 1988²), który sprawdza się lepiej niż NDVI na obszarach o małym zwarciu pokrywy roślinnej. Wskaźnik SAVI obliczany jest na podstawie tych samych zakresów spektralnych co NDVI, jednak z dodatkowym parametrem glebowym L przyjmującym wartości od 0 (dla bardzo gęstej pokrywy roślinnej) do 1 (dla bardzo małej pokrywy roślinnej), najczęściej 0,5 (stosowane są też liczne modyfikacje SAVI z funkcją opisującą wartość L). Wzór do obliczenia wskaźnika SAVI:

$$SAVI = \frac{NIR - Red}{NIR + Red + L} * (1 + L)$$

$$Red - reflektancja w kanale czerwonym,$$

$$NIR - reflektancja w kanale bliskiej podczerwieni.$$

Przy dużym zagęszczeniu roślinności lepszym wskaźnikiem roślinności stosowanym do szacowania zielonej biomasy jest wskaźnik SR (Simple Ratio; Jordan 1969³). Bazuje on na założeniu, iż zielona biomasa odbija względnie więcej promieniowania podczerwonego aniżeli czerwonego, a wraz z przyrostem biomasy rośnie stosunek wartości odbicia w zakresie bliskiej podczerwieni do wartości odbicia w zakresie promieniowania czerwonego:

$$SR = \frac{NIR}{Red}$$
 $Red - reflektancja w kanale czerwonym,$
 $NIR - reflektancja w kanale bliskiej podczerwieni.$

Wskaźnik SR lepiej niż NDVI reaguje na zmiany biomasy w późniejszych fazach wzrostu. Z kolei jest on mało przydatny do opisu biomasy przy pokryciu gleby roślinnością poniżej 50%, gdyż jest wrażliwy na efekty atmosferyczne.

Z głównego menu wybierz **Raster > Kalkulator rastra** otworzy się okno, w którym można wykonywać obliczenia na warstwach rastrowych.

W polu **Kanały rastra** widać wszystkie dostępne kanały obrazów wielokanałowych Sentinel-2 w następującym formacie: **nazwa_obrazu@numer_kanału**. Aby wykonać obliczenia należy napisać (lub stworzyć) równanie w polu **Wyrażenie kalkulatora rastra**. W celu uniknięcia błędów podczas wpisywania nazw obrazów kliknij dwukrotnie na nazwę kanału, żeby przeniosła się do pola **Wyrażenie kalkulatora rastra**. Napisz równanie na NDVI:

$(s2_{20180823}_{10m@7} - s2_{20180823}_{10m@3}) / (s2_{20180823}_{10m@7} + s2_{20180823}_{10m@3})$

Dla potrzeb tego ćwiczenia zostały stworzone rastry wielokanałowe z obrazów Sentinel-2 o rozdzielczości 10 m dla zakresu widzialnego (RGB) i bliskiej podczerwieni (NIR) oraz dla zakresów średniej (SWIR1 i SWIR2) podczerwieni i podczerwieni krawędziowej (RedEdge) przepróbkowane do rozdzielczości 10 m. Dlatego na potrzeby tego ćwiczenia za kanał Red wybierz kanał 3 (nazwa@3), a za kanał NIR – kanał 7 (nawa@7)

Następnie w polu **Warstwa** wskaż katalog wynikowy i nadaj nazwę rastrowi z wynikiem obliczeń (np. *S2_20180823_NDVI.tif*). Upewnij się, że opcja **Dodaj wynikową warstwę do projektu** jest aktywna i kliknij **OK**.

² Huete A.R. 1988. A Soil Adjusted Vegetation Index (SAVI). Remote Sensing of Environment 25: 295-309.

³ Jordan C.F. 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology 50: 663-666.

anały rastra	1				Warstw	a wyniko	wa				
Kanały rastra Sz. 20180823.10m@1 Sz. 20180823.10m@2 Sz. 20180823.10m@4 Sz. 20180823.10m@5 Sz. 20180823.10m@6 Sz. 20180823.10m@7 Sz. 20180823.10m@7 Sz. 20180823.10m@8 Sz. 20180823.10m@9 Sz. 20180823.10m@9 Sz. 20180823.10m@9 Sz. 20180823.10m@10			Warstwa wynikowa Warstwa Format vyjściowy Zasięg wybranej warstwy X min 593910,00000 ‡ Y min 5896450,00000 ‡ Kolumn 7417 ‡ Wyjściowy układ współrzędnych ✔ Dodaj wynikową warstwę do			\MD_3_2\Wyniki\S2_20180823_NDVLtif					
Operatory	, 										
+	*	sqrt	COS	sin		tan	log10	(
-	1	^	acos	asin		atan	In)			
<	>	=	!=	<=		>=	AND	OR			
abs	min	max									
yrażenie ka ("s2_20	ikulatora rast 180823_10m	ra @7" - "s2	2_20180823_	_10m@3") /	("s2_	20180823_:	LOm@7" + "	s2_201808	23_10m@3")	1

W ten sposób otrzymasz mapę wskaźnika NDVI w skali szarości.

Jeżeli chcesz zmienić kolory, aby obraz był bardziej czytelny, w panelu **Właściwości warstwy (PPM > Właściwości > Styl)** wybierz rodzaj mapy **Jednokanałowy pseudokolor** i dostosuj kolory. Wybierz paletę kolorów **RdYlGr**, która niskie wartości NDVI obrazuje jako czerwone, średnie wartości NDVI jako żółte, a wysokie wartości NDVI jako zielone oraz ustaw **skumulowany poziom odcięcia od 2,0 do 98,0%** wartości minimalnej i maksymalnej.

Q *0Z_5_2_2 - QGIS							
Projekt <u>E</u> dycja <u>W</u> idok W <u>a</u> rstv	wa <u>U</u> stawienia <u>W</u> tyczki Wekt <u>o</u> r <u>R</u> aster <u>B</u> a	za danych Winternecie	Siatka SCP Progessing Por	noc <u>G</u> IS Supp	ort		
🗋 🛅 🗐 🚼 😭 💕	R 👧 🍕 🔍 🏹 👯 🗨 🤻 🖑	6 4 5 0	Ο 🧠 🗏 🗮 🏶 Σ	: 🛲 - 🔛	0. • [T] •		
🦛 🎕 Vi 💪 🖷 💹	///局名友·服育べ日	📋 » 📟 » 👌	A 🖪 🛃 🔹 🤞	3 V. 👘	2 🌲 px 🔹 🍸	$\mathscr{U} \cdot \times \mathscr{D}$	
🛝 ile 🛝 ile 👈 👈 🖉	8 🗞 Ya Ya 🗉 - 🔚 - 🔂 - 🛼						
Przeglądarka	88	🏭 🔇 Właściwości warstw	v — S2 20180823 NDVI — Stv	4			×h
		a	▼ Rendrowanie kanałów				
Ulubione	inne	a Informacio	Sposób wyświetlania Jednokar	ałowy pseudokole	or v		
 Katalog projektu 		anionnacje	Kanal	Kanal 1 (Gr	av)		
🤊 🔹 🛅 Dane	Sec. Sec. Sec.	🗧 💸 Źródło	Min	Ranar 1 (di	May	0.99720	42
		a 😻 Styl	w Ustawienia wartości min	imalnej i makevr	max	Blues	
SAVI	A STATE OF	Przezroczystość		maniej i maksyi	inine,	BrBG	
🐢 🖉 BPN.shp						BuGn	
CLC2018_B	BPN.shp	A Histogram	poziom odcięcia 2,0	4 - 98,0	0 🖾 🗘 %	BuPu	
S2_201808	323_10m.tif	💑 🎸 Renderowanie	min/max			GnBu	
🐨 _ 🕨 🗋 Wyniki	Stran Interferen	🔮 🕓 Czas	średnia +/-	2.00	\$	Greens	
Ver ► Q 07 5 2 2		Piramidy	odchylenie standardowe	×	-	Greys	
V Algorytmy Processingu	Przeglądarka		Zasięg statystyk		Inferno		
Warstwy		Metadane	Dokładność		Oszacowane	(szybciej) Magm	
		🕈 🔚 Legenda	Interpolacie		Liniowa	Orange	-
CLC2018 BPN		🖉 🖾 QGIS Server	Paleta kolorów			PRGn	
✓ ✓ S2 20180823	NDVI		Przyrostek jednostki etykiety		Odwróc paletę kolorów	PiyG	
-0,3896	Powiększ do warstwy		Dokładność opisu		Blues	Plasma	
-0,2179	Pokaž w podglądzie Koniuj warstwa		bowautosc opisu	The difference of the second	Greens	PuBu	
0,1256	Zmień nazwe warstwy		wartosc Kolor	Etykieta	Greys	PuBuG	n .
0,2973 🔊	Powiększ do <u>n</u> atywnej rozdzielczości (100%)		0,1697747	0,1698	Magma	PuOr	
0,4691	Wzmocnij kontrast do zasięgu widoku				RdGy	PuRd	
0,7993	Duplikuj warstwę		0,3491546	0,3492	Reds	Purple:	i
0,9314	Usuń warstwę				Spectral	RdBu	
S2_20180	Przenieś na górę		0,5285345	0,5285	Viridis	RdGy	
	Przenies na doł	2	· · · · · · · · ·		solar	RdPu	
	Istaw zakres skalowy widoczności warstwy		0,7079144	0,7079	Wszystkie palety kolorów	RdYIBu	
5	układ warstwy		Tryb ciągła 🔻		Utwórz nową paletę kolorów	w RdYlGr	¢
	Eksportuj >		Klasyfikuj 🖶 🥅	æ 📄 🖪	Edytuj paletę kolorów	Reds	
Q, Szukana fraza (Ctrl+K)	Style >		4		Zapisz paletę kolorów	Viridie	× 0, 4
1	Właściwości		Styl 🔻			ок Уlfin	Pomoc

Następnie analogicznie jak powyżej oblicz wskaźnik SAVI (przyjmując parametr glebowy L= 0,5) oraz wskaźnik SR na podstawie obrazu satelitarnego Sentinel-2 z 23.08.2018 r. korzystając z narzędzia **Kalkulator rastra** oraz dostosuj sposób ich wyświetlania (**Styl: Jednokanałowy pseudokolor**, paleta kolorów **RdYlGr** oraz **skumulowany poziom odcięcia od 2,0 do 98,0%** wartości minimalnej i maksymalnej).

Równanie na SAVI:

Równanie na SR:

11

3. Obliczenie wskaźnika wodnego

Do oceny stanu środowiska przydatne mogą być również wskaźniki wodne, które mogą wskazać przyczynę gorszej kondycji roślinności wynikającą z deficytu lub nadmiaru wody. Do najbardziej popularnych należy wskaźnik NDWI, czyli znormalizowany różnicowy wskaźnik wody (Normalized Difference Water Index; Gao 1996⁴) informujący o stanie (zmianach) zawartości wody (absorpcja promieniowania SWIR) i miękiszu gąbczastego w koronach roślinnych (NIR). Obliczenie NDWI wykonuje się z wykorzystaniem wzoru:

NDWI =	NIR – SWIR2	SWIR2 – reflektancja w kanale średniej podczerwieni,
	$\overline{NIR + SWIR2}$	NIR – reflektancja w kanale bliskiej podczerwieni.

Na wielkość NDWI wpływa zarówno wysuszenie, jak i więdnięcie roślinności znacząco obniżające uwodnienie liści, a w konsekwencji także wartość NDWI, dzięki czemu jest on bardziej czułym wskaźnikiem monitorowania suszy niż wskaźnik NDVI. Według literatury stan suszy występuje przy spełnieniu warunku: NDVI < 0,5 oraz NDWI < 0,3 (Gu i in. 2007⁵), a intensywność suszy wyznaczyć można na podstawie poniższych wartości progowych (Gulácsi i Kovács, 2015⁶):

NDWI	Ocena stanu suszy
> 0,4	Brak suszy
0,3 - 0,4	Lekko sucho
0,2 - 0,3	Umiarkowanie sucho
0,0 - 0,2	Bardzo sucho
< 0	Ekstremalnie sucho

Innym wskaźnikiem, często wykorzystywanym w monitorowaniu wpływu stresu wodnego na stan roślin, jest wskaźnik wilgotności MSI (Moisture Stress Index; Hunt i Rock, 1989⁷) obliczany według wzoru:

SWIR1	SWIR1 – reflektancja w kanale średniej podczerwieni,
$MSI = \frac{1}{NIR}$	NIR – reflektancja w kanale bliskiej podczerwieni.

Przy obliczaniu wskaźnika MSI wykorzystywane są informacje o odbiciu w zakresie bliskiej oraz średniej podczerwieni. Wartość odbicia w zakresie średniej podczerwieni jest wrażliwa na stres wodny roślinności. Wraz ze wzrostem zawartości wody w liściach wzrasta w tym zakresie pochłanianie promieniowania. Zakres bliskiej podczerwieni jest na niego prawie nieczuły. Dane o odbiciu w zakresie bliskiej podczerwieni służą więc jako dane referencyjne. Niskie wartości wskaźnika MSI charakterystyczne są dla liści o wysokiej zawartości wody. Wartości tego wskaźnika wahają się od 0 do ponad 3 (dla obszarów pokrytych roślinnością od 0,4 do 2). Według literatury wartości MSI \leq 0,5 oznaczają wysoką zawartość wody i brak stresu wodnego roślin, a MSI > 0,5 oznaczają niską zawartość wody w roślinach.

⁴ Gao B.C. 1996. NDWI – A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment 58: 257-266.

⁵ Gu Y., Brown J.F., Verdin J.P., Wardlow B. 2007. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters 34(L06407): 1-6.

⁶ Gulácsi A., Kovács F. 2015. Drought Monitoring With Spectral Indices Calculated From MODIS Satellite Images In Hungary. Journal of Environmental Geography 8(3-4): 11-20.

⁷ Hunt E.R., Rock B.N. 1989. Detection of Changes in Leaf water Content Using near and Middle-Infrared Reflectances. Remote Sensing of Environment 30: 43-54.

Do detekcji obszarów dotkniętych suszą można wykorzystać również znormalizowany różnicowy wskaźnik suszy NDDI (Normalized Difference Drought Index; Gu i in. 2007⁵) obliczany na podstawie stosunku wskaźnika NDVI i NDWI:

Wartość wskaźnika NDDI wzrasta wraz z nasileniem zjawiska suszy, przy założeniu minimalnych kryteriów suszy dla NDVI < 0,5 oraz NDWI <0,3, stan suszy występuje przy NDDI > 0,25.

Za pomocą narzędzia **Kalkulator rastra** (menu **Raster**) oblicz wskaźnik NDWI oraz MSI na podstawie danych satelitarnych Sentinel-2 z 23.08.2018 r.

Równanie na NDWI:

(s2_20180823_10m@7 - s2_20180823_10m@10)/(s2_20180823_10m@7 + s2_20180823_10m@10) Równanie na MSI:

s2_20180823_10m@9/s2_20180823_10m@7

Zmień sposób wyświetlania obliczonych wskaźników NDWI i MSI (**Właściwości > Styl**) na **Jednokanałowy pseudokolor** i wybierz paletę kolorów **RdYlBu** oraz ustaw **skumulowany poziom odcięcia od 2,0 do 98,0%** wartości minimalnej i maksymalnej. Ponieważ im wyższa wartość wskaźnika MSI tym większy stres wodny (mniej wody w roślinie), w przypadku rastra MSI należy odwrócić paletę kolorów (**PPM > Paleta kolorów > Odwróć paletę kolorów**).

Dla dodatkowego sprawdzenia czy na obszarze Parku nie wystąpiła susza, za pomocą **Kalkulatora rastra**, można dodatkowo obliczyć wskaźnik NDDI korzystając z obliczonych map wskaźnika NDVI i NDWI.

4. Analiza wartości wskaźników roślinności i wskaźników wodnych

Istnieje kilka sposobów na przeanalizowania wartości wskaźników teledetekcyjnych w celu określenia stanu roślinności na badanym obszarze. Wykorzystując mapy wskaźników można policzyć szereg statystyk dla danych punktów pomiarowych lub wybranych obszarów (poligonów) podlegających

kontroli albo dokonać oceny wizualnej zmian. Innym sposobem na analizę kondycji roślinności na danym obszarze jest opracowanie mapy zmian danego wskaźnika na podstawie danych wieloczasowych (z jednego sezonu wegetacyjnego lub z wielu lat).

Przy użyciu wtyczki **MapSwipe Tool** na podstawie obliczonych wskaźników spróbuj ocenić wizualnie stan roślinności na obszarze Parku. Sprawdź co może być przyczyną gorszej kondycji roślinności na danym obszarze.

By użyć wtyczki zaznacz jedną z porównywanych warstw (np. MSI) tak by była wyświetlona w głównym oknie mapy, a drugą (np. SAVI) tak by była podświetlona na niebiesko i kliknij ikonę **MapSwipe Tool**. W oknie głównym pojawi się jeden obraz, po kliknięciu lewym klawiszem myszki i przesunięciu kursora w oknie głównym pojawi się przesuwalna linia (pionowa lub pozioma) oddzielająca obrazy.

Do obliczenia statystyk wskaźnika NDVI dla poszczególnych klas pokrycia terenu występujących na obszarze Parku wykorzystaj narzędzie **Statystyki strefowe** (panel **Algorytmy Processingu > Raster - analiza > Statystyki strefowe**). W oknie **Statystyki strefowe** jako **Warstwę wejściową** wybierz warstwę z klasami CORINE (*CLC2018_BPN.shp*), jako **Warstwę rastrową** warstwę z obliczonym wskaźnikiem NDVI (**Kanał rastra 1**). Jako **Przedrostek kolumny wynikowej** wpisz "NDVI_". Następnie wybierz **Statystyki do obliczenia: Licz, Średnia, Mediana, St dev, Minimum, Maksimum**, Wariancja i zatwierdź klawiszem **OK**. Następnie w **Statystyki strefowe** wskaż miejsce zapisu, nazwę (np. *S2_20180823_NDVI_stat*) i format (CSV) pliku wynikowego (**zapisz do pliku**) i kliknij **Uruchom**.

Wheeld Waldes Dartes Dava danigh Winternesis Sister 500 Dec	proving Domos CIS Support	
		Y OP
	Statustyki strefowe	×
Statystyki strefowe Perametry Pik zdarzeń Warstwa wejściowa Colos EPNE [PESci:32634] Tylko zazmaczone obiekty Warstwa rastrowa Sz_20108023 INVT [EPSc:32634] Kanał rastra Kanał I (Gray) Przedrostak kolumny wynkowej NOVL Statystyki do obliczenia Wyhorno 8 opcji	Parametry Pik zdarzeń Image: Statystyki do obliczenia Image: Statystyki do obliczenia Image: Statystyki do o	X Statystyki strefowe Algorytm oblicza statystyki warstwy rastrowej dla kazdego elementu nakładającej się wektorowej warstwy poligonowej.
Statystyki strefowe		
/OZ_5_srodowisko/MD_3_2/Wyniki/S2_20180823_NDVI_stat.csv		Anuluj
Contracting period of the associated in the second defined of	(reynong jono przestruczone visodowe) Udułów Uruchom Zamknj Pomoc	
	Wyczki Wektor Raster Baza danych W Internecie Statka SCP Pri Wyczki Wektor Raster Baza danych W Internecie Statka SCP Pri Statystyki strefowe Perametry Pikz dazeń Perametry Pikz dazeń Warstwa rastrowa Sz_20180823 INVT [EPSG:32634] Ułytko zastraczone oblekty Warstwa rastrowa Sz_20180823 INVT [EPSG:32634] Ułytko zastrowa Sz_20180823 INVT [EPSG:32634] Wyrzedrostek kolumny wynikowej No/L Statystyki strefowe (02_5_srodowisko/MD_3_2/Wynik/S2_0180823_ND/L stat.cov W Czyłaj plik wynikowy po zakończeniu 0% Wytonaj jako przetwarzanie wsadowe	Wyckk Wektyr Baster Baza danych Winternecie Statks SCP Processing Pomoc GlS Support Wyckk Wektyr Baster Baza danych Winternecie Statks SCP Processing Pomoc GlS Support Wintskie Statustyki strefowe Parametry Pik zdarzeń Warstwa reatrowa Warstwa reatrowa Wintskie reatro Statystyki strefowe Warstwa reatrowa Warstwa reatrowa Worz, Statystyki strefowe Wiejszość Wiejszość Worzyca plik wynikowy po zakończeniu Ofis Wykonaj jako przetwarzanie wsadowe

Obliczone statystyki można wyświetlić w programie QGIS (**PPM> Otwórz tabelę atrybutów**) lub w dowolnym arkuszu kalkulacyjnym.

Obliczone statystyki wskaźnika NDVI dla poszczególnych klas pokrycia terenu (plik CSV) otwórz za pomocą programu LibreOffice. Jako **Opcje Separatora** wybierz **Przecinek**, kliknij **OK** i **Otwórz kopię** pliku.

Importuj tekst - [S	2_20180823_NDVI_s	tat.csv]		×	
Importuj					
Zest <u>a</u> w znaków:	Europa Środkowa	(Windows-1250/WinLat	in 2) 🗸 🗸		
Język:	Domyślny - Polski		\sim		
Od <u>w</u> iersza:	1				
Opcje separatora					
○ <u>S</u> tała szerokoś	ić	Rozdzielony			
□ <u>T</u> abulator	Przecinek 🗆 Ś	r <u>e</u> dnik 🗆 S <u>p</u> acja 🛛	<u>I</u> nny		
Scal <u>s</u> eparat	ory 🗆 S	pa <u>c</u> je wiodące (Ogranicznik cią <u>gu</u> :	" ~	
Inne opcje					
🗆 <u>F</u> ormatuj pola	w cudzysłowie jako	tekst 🗌 lde <u>n</u> tyfikuj licz	by specjalne		
Pola					
Typ kolumny:	\sim				
Standardow	Standardo Standard	oStandardowe	Standardowe S	itan \land	
1 OBJECTID O	Code_18 Remark	Area_Ha	ID S	haj	
2 50	112	92 77050843990	EU_1795530 2	02	
4 112	112	35.27000633500	EU_1795898 2	65:	Dokument w użyciu X
5 119	112	140.90876184000	EU_1795913 7	16	Plik dokumentu 'S2 20180823 NDVI stat csv' został zablokowany przed edycia
6 177	112	25.56082136000	EU_1796133 2	184	przez:
7 1/8	112	20.21013000500	EU_1796136 2	201	Ni
8 220	211	88 97553606010	EU_1797275 1	04. ~	Nieznany uzytkownik
<		50.5700000010	20 1000101 0	>	Otwórz dokument w trybie tylko do odczytu lub otwórz kopię dokumentu w trybie do edycji.
Po <u>m</u> oc		[<u>O</u> K <u>A</u> nu	ıluj	Otwórz tylko do o <u>d</u> czytu Otwórz <u>k</u> opię <u>A</u> nuluj
					11

W celu zestawienia statystyk w pierwszej kolejności należy zamienić separator dziesiętny z " ." na " ,". W tym celu z menu **Edycja** wybierz **Znajdź i zamień** (lub wciśnij klawisze **Ctr+H**), w pisz w **Znajdź** " .", a w **Zamień**: " ," i kliknij **Zamień wszystkie**.

Znajdź i za	ımień	×
<u>Z</u> najdź:	•	~
	Uwzględniaj wielkość li <u>t</u> er Uwzględnij for <u>m</u> atowanie komórki	Cał <u>e</u> komórki 🛛 W <u>s</u> zystkie arkusze
<u>Z</u> amień:	r	~
Znaj <u>c</u>	<u>t</u> ź wszystkie Znajdź <u>p</u> oprzedni Znajdź nas <u>t</u> ępny <u>Z</u> am	ień Zamjeń wszystkie
the linne op	icje	
Po <u>m</u> oc		<u>Z</u> amknij

Obliczone statystyki można przeanalizować dla pojedynczych obszarów (obiektów, poligonów):

	Α	В	С	D		E	F	G	H	1	J	К	L	M	N
1	OBJECTID	Code_18 Re	emark	Area_Ha	ID		Shape_Leng	Shape_Area	NDVI_count I	VDVI_mean	NDVI_median	NDVI_stdev	NDVI_min	NDVI_max	NDVI_variance
2	11	112		30,23	BEU_	1795530	2 616,00	302 301,81	16	0,7946	7 0,8404	4 0,09483	0,50000	0,87618	0,00899
3	50	112		92,7	7 EU_	1795684	9 021,17	927 705,08	14	0,5802	8 0,6176	8 0,16598	0,28279	0,80250	0,02755
4	112	112		35,2	7EU	1795898	2 652,33	352 700,06	1	0,8474	0 0,8443	0 0,01048	0,82656	0,85270	0,00011
5	119	112		140,93	1 EU_	1795913	7 165,12	1 409 087,62	40	0,7042	6 0,7190	4 0,11241	0,41681	0,85546	0,01264
6	177	112		25,56	5EU	1796133	2 184,13	255 608,21	23	0,7529	4 0,7836	9 0,09126	0,55686	0,86628	0,00833
7	178	112		26,22	1 EU_	1796136	2 704,41	262 101,31	202	0,7793	7 0,8150	9 0,09065	0,39773	0,88686	0,00822
8	228	142		601,36	5EU	1797275	12 006,31	6 013 613,45	3 569	0,8181	8 0,8329	6 0,07395	0,20200	0,90724	0,00547
9	239	211		88,98	BEU_	1803434	6 941,45	889 755,36	455	0,5498	8 0,5626	8 0,18806	0,19617	0,87893	0,03537
10	248	211		160,72	2 EU_	1803474	11 570,94	1 607 184,77	5	0,7428	6 0,7510	8 0,03152	0,68436	0,77432	0,00099
11	249	211		117,23	1 EU_	1803483	7 151,44	1 172 062,83	231	0,7379	0 0,8284	3 0,15317	0,25220	0,86900	0,02346
12	250	211		31,32	2EU	1803484	3 071,18	313 184,28	11	0,8499	7 0,8502	0 0,01171	0,82033	0,86182	0,00014
13	363	211		4 791,66	5EU	1803899	62 839,41	18 451 438,86	48	0,7922	7 0,8090	0 0,08763	0,55187	0,90490	0,00768
14	396	211		46,24	4EU	1803973	5 298,39	462 410,84	4 223	0,5453	9 0,5503	3 0,24586	0,00780	0,92672	0,06045
15	397	211		56,26	SEU_	1803974	4 443,05	562 571,90	12	0,7090	9 0,7142	4 0,03208	0,64706	0,75865	0,00103

lub zebrać sumaryczne wyniki w postaci tabeli przestawnej.

Następnie zaznacz wszystkie kolumny i wiersze z danymi (klawisze **Ctrl+A**) i z menu **Wstaw** wybierz **Tabela przestawna**. W oknie **Wybierz źródło** zaznacz **Bieżące zaznaczenie** i kliknij **OK**. W oknie **Układ tabeli przestawnej** przeciągnij z **Pola dostępne** pole z kodami klas (Code_18) do **Pola wierszy**, a pole: NDVI_count, NDVI_mean, NDVI_median, NDVI_min, NDVI_max, NDVI_variance do **Pola danych**. W **Polu danych** wybierz dla NDVI_count sumę jako funkcję do obliczeń, a dla pozostałych pól średnią (dwukrotnie kliknij na dane pole i z okna **Pole danych Funkcja** wybierz **Średnia**). Pozostałe opcje zaznacz jak poniżej i stwórz wynikową tabelę przestawną w nowym arkuszu klikając **OK**.

Układ tabeli przestawr	iej	×	
<u>Filtry:</u>		Pola dostępne:	
Pola wierszy: Code_18	Pola kolumn: Dane Pola ganych: Suma - NOVI_count Sertinia - NOVI program	OBJECTID Code_18 Remark Area_Ha ID Shape_Area NDVL_count NDVL_mean NDVL_median NDVL_stdev NDVL_min NDVL_max	
	Šrednia - NDVI_median Šrednia - NDVI_stdev Šrednia - NDVI_stdev	NDVI_variance	Pole danych
	Przeciągnij elementy na pożąc	daną pozycję	Funkcja
☐ Opcje Ignoruj puste wier: ✓ Ignoruj puste wier: ✓ Kolumny podsumo □ Dodaj filtr ☐ Zródło i cel	sze ☐ Identyfik owania ☑ Wiers <u>z</u> e p ☐ Włącz <u>s</u> c	uj <u>k</u> ategorie podsumowania hodzenie do szczegółów	<mark>Średnia</mark> Mediana Maks Min
Źródło			lloczyn
O Nazwany zakres		~	Zlicz (tylko liczby) Odch std. (próbka)
Wybór	\$S2_20180823_NDVI_stat.\$A\$1:	\$N\$238	Odch. std. pop. (populacja)
Cel O Nowy arkusz Nazwany zakres			 □ Pokaż <u>e</u>lementy bez danych Nazwa: NDVI_mean ⊕ Wartość wyświetlana
∞ wybor Po <u>m</u> oc	3 labela przestawna_S2_201808		Pomoc <u>O</u> K <u>A</u> nuluj

Wynikowa tabela przestawna ze statystykami wskaźnika NDVI dla poszczególnych klas pokrycia terenu CORINE Land Cover w obszarze Parku, obliczonymi na postawie danych satelitarnych Sentinel-2 z 23.08.2018 r.

	A	В	C	D	E	F	
1		Dane					
2	Code_18 💌	Średnia - NDVI_mean	Średnia - NDVI_median	Średnia - NDVI_min	Średnia - NDVI_max	Średnia - NDVI_variance	
3	112	0,756742	0,779284	0,569463	0,851568	0,007911	
4	142	0,818177	0,832959	0,202005	0,907236	0,005468	
5	211	0,734661	0,752889	0,455294	0,867232	0,013696	
6	231	0,762940	0,784509	0,366091	0,907666	0,010300	
7	242	0,749009	0,784866	0,448417	0,889871	0,014733	
8	243	0,819613	0,834313	0,674245	0,893382	0,005623	
9	311	0,834611	0,843626	0,485254	0,901444	0,002048	
10	312	0,792060	0,798174	0,480450	0,888978	0,003980	
11	313	0,831652	0,838705	0,526325	0,902860	0,002078	
12	324	0,811283	0,821307	0,484610	0,900633	0,002717	
13	411	0,781494	0,793189	0,420281	0,897979	0,005090	
14	512	0,861017	0,862610	0,844203	0,878945	0,000150	
15	Razem Wynik	0,794452	0,808446	0,477592	0,893194	0,006058	

Podobne analizy można przeprowadzić na pozostałych wskaźnikach roślinności (SAVI, SR) i wskaźnikach wodnych (NDWI i MSI) w celu szerszej analizy stanu roślinności na obszarze chronionym. Jak również można zestawić te dane z odpowiednimi wskaźnikami obliczonymi na podstawie danych satelitarnych z wybranego okresu w celu analizy zmian wieloczasowych (w sezonie wegetacyjnym lub a przestrzeni lat).

Średnie wartości NDVI dla klas pokrycia terenu CORINE Land Cover w obszarze BPN (w sezonie wegetacyjnym IV-X.2018)

5. Mapa zmian wartości wskaźników roślinnych i wodnych

Dodaj do projektu rastry z obliczonymi wartościami wskaźnika NDVI dla pozostałych analizowanych dat (dane z katalogu *MD_3_2\Dane\NDVI*).

Korzystając z narzędzia **Kalkulatora rastra** odejmij wartości wskaźnika NDVI obliczonego na podstawie danych Sentinel-2 z 09.07.2018 (*S2_20180709_NDVI.tif*) od wartości wskaźnika NDVI obliczonego na podstawie danych Sentinel-2 z 23.08.2018 (obliczone w pkt.3). W polu **Wyrażenie kalkulatora rastra** wpisz formułę:

"S2_20180823_NDVI@1"-"S2_20180709_NDVI@1"

oraz wskaż nazwę i miejsce zapisu wynikowego pliku.

nały rastr	а				Warstwa	a wynikov	va				
S2_20180410_NDVI@1				Warstwa			MD_3_2\V	MD_3_2\Wyniki\S2_NDVI_0823_0709.tif 🔕			
S2_20180510_NDVI@1				Formatustiócious			Contiff				
S2_201805	530_NDVI@1			_	G			Geotier	Geotiff		
S2_201807	709_NDVI@1 823_10m@1				Zasie	ęg wybran	ej warstwy				
S2_201808	323_10m@2				X min	593910,	00000 :		X max	668080,00000	4
S2_201808	823_10m@3				V min	5806450	00000	-	V may	5958700 00000	
S2_201808	823_10m@4					5050150	,00000		1 max	5556766,00000	
S2_201808	823_10m@5				Kolumn	7417	1		Wierszy	6225	1
S2_201808	823_10m@6				Wyjśćio	wy układ i	współrzędny	ch EPSG:3263	34 - WGS 84 / UT	M zone 34N 👻	1
S2_201000	823_10m@8				L. Dard			المامة مراجع			
52_201000	525_10m@0			•	V DOU		wą wai stwę	uo projektu			
Operatory	y	cart	CO 5	cin		20	log10				
T		sqrt		SIII			logio				
-	1	^	acos	asin	at	tan	In)			
<	>	=	!=	<=		-	AND	OR			
abs	min	max									
vrażenie k	alkulatora rasi	tra									
s2_20180	0823_NDVI@1	" - "s2_2	0180709_NI	DVI@1"							

W wyniku otrzymujemy mapę w skali szarości. Jeżeli chcesz zmienić kolory, aby obraz był bardziej czytelny, w panelu Właściwości warstwy (PPM > Właściwości > Styl) wybierz rodzaj mapy Jednokanałowy pseudokolor i dostosuj kolory. Wybierz paletę kolorów RdYlGr i ustaw 10 równych przedziałów klas (Tryb: równe przedziały, Liczba klas: 10).

Q *OZ_5_2_2 — QGIS								
Projekt Edycja Widok Warstwa U	stawienia <u>W</u> tyczki Wekt <u>o</u> r <u>R</u> aster <u>B</u> aza dany	ych Winternecie Siatka SCP	Processing Pomoc GIS Sup	oport				
🗋 🗁 🗟 🔂 😫 🐔 🕚	🚽 R R 🍕 Q Q 🏗 🗧 🖷 🐥	43 L 🛯 🛈 😂 🔍	🔲 🔛 🗰 ד 🦻	• [T] •				
🧟 🎕 Vi 🔏 🖷 🔯 🕖	/ # 8 k · 2 6 × 8 6	» 🥯 » 🍓 🚺	🗠 🔳 😼 🕹 Ve	12 🌲 px	- 7 & X >	- M		
IL II: IL II: 🕉 🕉 💪 🤅	y y y 🔣 - 🗟 - 🕞 - 🛶	Q Właściwości warstw	vy — S2_NDVI_0823_0709 — St	yl			×	
Algorytmy Processingu	88	Q	Rendrowanie kanałów Sposib wyświetania Jednokanałowy pseudokolor *					
	- Contraction and	informacie						
C Ostatnio używane		J	Kanał		*			
Statystyki strefowe	and the second	S IN ZIOGIO	Min	-0.6961759	Max	0 8946172		
To Histogram strefowy		💐 Styl	h. listawienia wartości minimalnej i maksymalne		Pass	0,0010475		
Kaster - analiza	C Raster - analiza			, ·,				
Statystyki strefowe		The line and	Interpolacje	Liniowa	1		Ť.	
🧠 🔹 🗱 Statystyki strefowe v	varst	Histogram	Paleta kolorów					
· ·		🔨 💉 🧹 Renderowanie	Przyrostek jednostki etykiety					
		Czas	Dokładność opisu	4		e	a ≎	
			Wartość Kolor	Etykieta				
	darta	Piramidy						
Vo Vigoryuny Processingu Przegie	p G	🥑 Metadane	-0,6961759	-0,6962				
Warstwy		E Legenda						
			-0,5194211	-0,5194				
> V S2 NDVI 0823 070	9	QGIS Server		100000				
S2_20181012_NDV			-0,3426663	-0,3427				
S2_20180709_NDV) ~~							
S2_20180530_NDV			-0,1659115	-0,1659			Ŧ	
▶ ■ ► 52_20180410_NDV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32	Tryh Równe przedziały 💌			Liczba klas 10 @	a 👌	
52_20180823_NDVI_st	at 1							
CLC2018_BPN			Klasyfikuj 🖶 🚍	9° 🛄 🔂				
S2_20180823_NDD	In S		Przytnij wartości spoza zak	resu				
► S2_20180823_NDW	1 18 0	Sec. 1	-				*	
▶ S2_20180823_SR		Sec. 1	Styl 💌			OK Anuluj Zastosuj	Pomoc	

Mapę zmian wartości wskaźnika roślinności NDVI można również przedstawić w prostej formie dwukolorowej mapy zmian (zmiana wskaźnika na "plus" i na "minus"). W tym celu należy zmienić liczbę przedstawianych na mapie klas na 2 klasy.

Analogicznie stwórz mapę zmian wartości wskaźnika NDWI dla analizowanych dat (wartość wyrażenia w Kalkulatorze rastra: "S2_20180823_NDWI@1"-"S2_20180709_NDWI@1") i wyświetl ją w Stylu: Jednokanałowy pseudokolor, paletę kolorów RdYlBu i ustaw 10 równych przedziałów klas (Tryb: równe przedziały, Liczba klas: 10).

Komentarz:

W ćwiczeniu zapoznaliśmy się z możliwością wykorzystania wskaźników roślinności i wskaźników wodnych do analizy stanu roślinności na obszarze chronionym. Wskaźniki te mogą być analizowane zarówno w zakresie wybranego sezonu wegetacyjnego jak i podlegać ocenie na przestrzeni lat w oparciu o dane wieloczasowe. W analizie zmiany stanu roślinności należy zawsze uwzględnić naturalne procesy fenologiczne zachodzące na danym obszarze, czy prowadzone działania ochronne (np. koszenie, wypas itp.). Analizę stanu środowiska na danym obszarze warto oprzeć na kilku wskaźnikach teledetekcyjnych, zarówno roślinności (np. brak lub nadmiar wody, późny start sezonu wegetacyjnego, naturalne zmiany zachodzące w czasie sezonu wegetacyjnego). Ponadto mapy zmian można poddać również analizom statystycznym, aby np. wyznaczyć ogólną powierzchnię obszaru, gdzie nastąpił spadek lub wzrost wskaźnika roślinnego. Mapy zmian wskaźników mogą posłużyć również do szczegółowej analizy wizualnej opartej na mapach obliczonych wskaźników i na dodatkowych danych np. terenowych, meteorologicznych, w celu wyznaczenia obszarów, które powinny podlegać kontroli w terenie, czy szczególnym działaniom ochronnym.

Siedziba główna Agencji |ul. Trzy Lipy 3 (Budynek C), 80-172 Gdańsk | tel. +48 58 500 87 60 | e-mail: sekretariat@polsa.gov.pl Oddział w Warszawie | ul. Prosta 70, 00-838 Warszawa | tel. +48 22 380 15 50 | e-mail: sekretariat.warszawa@polsa.gov.pl Oddział w Rzeszowie | ul. Warszawska 18, 35-205 Rzeszów | tel. +48 516 222 695 | e-mail: michal.pilecki@polsa.gov.pl